
The rheological model (i) is a generalization of several well-known models. For ex- 
ample, if the yield stress to vanishes, Eq. (i) reduces to a rheological power-law equation. 
When m = n (to = 0) we obtain an ordinary Newtonian fluid. The value of Recr for to = 0 and 
m = n reduces to the value for a Newtonian fluid [2] (Fig. 4). Our results for Recr in the 
case T = 0 (Fig. 4) reduce to those for a non-Newtonian fluid with a rheological power law [6]. 

NOTATION 

ui, velocity vector components; to, yield stress; ~, shear viscosity; m, n, rheological 
constants; U, velocity of the unperturbed flow; ~, wave number; L, channel width; p, density; 

perturbationamplitude; c, phase velocity; Uo, characteristic velocity; H!~ 2), Hankel func ~ q, 
tions of the first and second kind of order 1/3; T, Reynolds stress. 
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HYDRODYNAMIC INSTABILITY OF THE AXISYMMETRIC FLOW OF AN IDEAL 

FLUID WITH AN INTERPHASE 

V. E~ Epikhin and V. Ya. Shkadov UDC 532.5.013.4 

We study the instability under simultaneous rotational and translational flow of 
a fluid and ambient medium in the cases of a cylindrical annular jet, capillary 
jet, and cylindrical fluid layers on the inner and outer surfaces of a cylinder. 

The type of flow under study is schematically illustrated in Fig. i. Reviews of the 
literature and some new experimental results on instabilities of jets can be found in [1-9]. 
The stability of a fluid on a rotating cylindrical surface was studied in [i0, ii]. In the 
present paper the stability of potential flow is considered in the most general formulation. 
Such flows are used in vaporizers, heat-transfer devices, chemical reactors, in the paper- 
pulp industry, and also in vertical--centrifugal methods of producing mineral fibers [ii]. 

In a cylindrical coordinate system with the axis of coordinates taken along the symmetry 
axis of the problem, the flow is described by the potential functions 

~,~ = U~,~X -b r~,iO. (1) 

where the second term in both equations gives the velocity potentials of line vortices along 
the axis of rotation with circulations 2~Pf, 2~re, Z~Pi, respectively [i]. At t = 0 a potential 
wave perturbation of infinitesimal amplituHe is applied to the unperturbed flow. The poten- 
tial functions of nonsteadymotion satisfy the Laplace equation and the Cauchy--Lagrange integral in 
a flow region to be determined as part of the solution. The boundary conditions express the jump in the 
normal stress due to surface tension, the continuity of streamline flow at the boundaries, 
and the boundedness of the potentials on the axis and at infinity, and also the periodicity 
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Fig. i. Schematic diagram of the flows under study: (a) 
fluid layer on the surface of a rotating cylinder; (b) annu- 
lar jet; (c) capillary jet. 

of flow along the axis. In the linear approximation the problem in each of the flow regions 
is written in the form 

A~5 = o, ~+ + ur  + - y -  r~ = - p' 

Ht  + UI21 x F Ho = ~ r  ( Y  = a, b), 
y2 

qSy=O,  Y =  1; 

~ ~ I Y / a  

~ipi - -  P~ - (,q~ + a2FGxx + fi~oo), 
a 2 

fiao ( I )  - -  E )  4 - / t ~ x  (Uj  - -  U~) = S z v  - -  ~ Y  (Y. = a), 
CL2 

Pb - -  Pr162 -- t-+ b -t- 
b z 

(2) 

(3) 

(4) 

(5) 

(6) 

HbO b2 (F ! - s  ( Y = b ) ,  

~ i  < oo, Y--~ O, (7) 

~ ~ < oo , Y --* oo , (8) 

These equations and boundary conditions are in dimensionless form using the following scales: 
the characteristic length Ro is taken as the mean radius of the initial cross-section of the 
annular jet, the initial radius of the capillary jet, or the inner or outer radius of the sur- 
face of the cylinder. We also use the reference velocity Uo and the density of the fluid OF. 
Let ~ = 2w/~ be the wavelength, where ~ is the wave number of the initial perturbation. The 
solution of the homogeneous problem (2), (3), (5)-(8) for the capillary jet, (2)-(5), (7) for 
a fluid layer on the inner cylinder surface, and (2)-(4), (6), (8) for a layer on the outer 
surface will be sought in the form of traveling waves 

fi(X, Y, O, O=R.(Y)  E, HCX, O, I )=H.E,  E=exp[i(~X +~O--Ct)l. 

Here R, H denote one of the quantities ~, p, Ha, Hb in the perturbed flow, ~ = 0, i, 2,... 
is the mode of the perturbation, and C = Cre + iCim is the eigenvalue of the linear homoge- 
neous problem. From the equations and boundary conditions (2)-(8) above, the complex ampli- 
tudes have the form 

�9 , ] ( Y )  = A f f ~ ( ~ Y )  + A2K~(~Y) ,  ~ , ~  = A f f ~ ( ~ Y ) ,  ~ , ~  = A ~ K ~ ( a Y )  (9)  

where Is, K B are the modified Bessel functions of the first and second kind of order 6. From 
(9) we can obtain the characteristic equations, which in turn can be used to find C for each 

(lO) 

(Zl) 

(12) 

of the above problems: 

r 2 r 2 b o = O, m2n 2 @ ax m2 @ ayn 2 @ a o @ pir~ (bx ~- Cxn 2) @ per~ (b v ~ cym 2) @ PiPe 

piTxr 2 "4:- cox - -  m2T" d = O, 

p e T u r e  - -  (oy - -  n 2 T d  --- O .  
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Equation (11) can be obtained from (i0) by taking the limit Pe § = (Pi < ~), Pe = 0; Eq. (12) 
follows from (I0) in the limit 0i § ~ (~e < =), Fi = 0. The coefficients of (10)-(12) are 
given by 

% L x  

Lx~ 

bx -- (%%Lo 
Lxv 

Cx  

L ~  (x, g) 

L v (x, y) 

Lo (x, g) 

~ (x) = Ie, (x) 
~/,,(*) 

m = ~ U ,  + 

P i  

0.2 

(0 x ~ CZ 

O y  : - -  O~ 

olxL v mxo)~aLo 

L ~  L~u 

- - ,  bu (%~:~Lo , bo - -  ~J,~Lo >0 ,  
L~j L~ 

v~jL~. %Lv > 0 ,  c u -  > 0 ,  
L.~u L:~v 

= ra (u) K~ (x) -- I~ (x) K~ (v) > 0, 

= & (u) t(,;, (z) - I; (z) K~ (.v) < o, 

:-= i ;  (v) K; ( .)  - .,; (~) a:; (y) < o, 

K~ 
('q------~) x = aa ,  b' = ab ,  - - . ,  T~ (u) ---: K ;  _ (y) ' 

1~ r f  _ C ,  n = ~ U j - F ~  r j  _ C ,  
(2 2 b 2 

- -  C, r~ --- czU~ + B - r L  - -  C.  
b2 

a a 

For the stability of a cylindrical jet in ambient media, condition (4) is replaced by the 

condition that ~f be bounded as Y§ and the boundary condition (6) is applied on the surface 
of the unperturbgd jet Y = b. The characteristic equation for this problem has a form simi- 
lar to (II), (12): 

PeTvr~ - -  ~v - -  n2Tx (g) -" 0 ,  ( 13 )  

w h e r e  t h i s  c a n  b e  o b t a i n e d  f r o m  (12)  i n  t h e  l i m i t  a +  0 .  E q u a t i o n  (10 )  i s  an  a l g e b r a i c  e q u a -  
t i o n  of fourth degree with real coefficients, while (11)-(13) are of second degree in C. The 
flow will be stable if these equations have real roots and will be unstable for complex roots. 
The solutions of (11)-(13) can be written in the respective forms: 

m? - -  iYf ~% YiT~ 
(1 + T,) 2 (1 + Ti) x d ' "m'e ' (14) .... ! + T ~  

% L . . . .  ( b = l ,  V = ~ ) ,  Ti . . . .  9i T) ' x ~ =  " <0 ,  ?~=~zAU'4.13 AF'  
L.o a z 

T eY~ ~,. % geTe .... , n r e = _ _ ,  (15 )  
n? -- (1 4. Te) 2 (1 + T~)'Cd 1 ~- T~ 

t.,j AF ( a =  1, x = a ) ,  T e = - - P e  ~u , % - -  > 0 ,  Y e = ~  
~ca Lo 

n? -- Tjy~ _L % Tj  = - -  9~ S_'J 
~tTZ I (t + Tj)~ (1 + TA -c~. (~) -c~ (u) (16) 

The basic parameters of the problem are: the relative densities of the media Pi, Pe; discon- 
tinuity of the translational velocities AU' = Uff-Ui, AU = Uff-Ue; torsion parameters Ff, Fi, 
Pc; Weber numbers W&, Wb; radii a, b; wave number a; and perturbation mode 8. We consider the 
structure of the above formulas using Eqs~ (15) as an example. The square of the imaginary 
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Fig. 2. Perturbation growth factors for a layer on the out- 
er surface of a cylinder. 

Fig. 3. Perturbation growth factors for a capillary jet. 

2 
part him is made up of two terms. The first corresponds to a Kelvin-Helmholtz instability as 
a result of the discontinuity of the velocity of the fluid and ambient medium near the inter- 
phase [i]. The second term consists of two parts. The first corresponds to a capillary in- 
stability; the second corresponds to a Taylor instability and appears as the difference in 

2 
centrifugal accelerations of the fluid and ambient medium. The structure of mim is analogous. 
From the above discussion we can make several conclusions on the effect of different physical 
factors on the stability of a layer on the outer cylinder surface. The velocity discontin- 
uity destabilizes the flow. The relative density Pe enhances the Kelvirr-Helmholtz instabili- 
ty [7]; however, the first term decreases for large values of Pe. The surface tension pro- 

motes stability of nonaxisymmetric perturbations ~ = i, 2, ..~ for any ~ ~ 0, and also axi- 
symmetric perturbations (~ = 0) for ~ ~ i. Torsion of the outer fluid layer desta- 
bilizes the flow; torsion in the ambient medium promotes stability of the perturba- 
tions and the effect increases with Pe" For a fluid layer on the inner cylinder sur- 

face, the above conclusions on the effect of the velocity discontinuity and the surface ten- 
sion on the flow stability remain in force. But in this case torsion of the fluid stabilizes 
the flow, and torsion of the medium destabilizes it, with the latter effect increasing with Pi. 

The results of typical calculations from (15) for the perturbation growth factors in a 
layer on the outer cylinder surface are shown in Fig. 2. The parameters of the problem are 
taken to be: Ui = Ue = Uy = O, F i = F e = O, F~ = I0, Pe = 10-2, Wb = 10-2' Curves 1-3 
correspond to a layer thihkness 10 -3 (a i, b "= 1.001), curves 4-6 to a layer thickness of 
i0 -= (a = i, b = 1.01), and curves 7, 8 to a layer thickness of i0 -:. ~ = 0 for curves i, 4, 
7; B = i0 for curves 2, 5; and ~ = 19 for curves 3, 6, 8. Interaction with the medium leads 
to an amplification of the instability of the higher modes. An increase in the fluid layer 
thickness causes destabilization of the flow and a decrease in the wave number of the fastest 
growing perturbations; the corresponding flow on the inner surface is stable. In Fig. 3 re- 
sults of calculations from Eqs. (16) in the case U e = O, U~ = 5, F e = O, Pe = 10-2, Wb = i0-~ 
are shown. Curves 1-3 refer to F~ = O, curves 4-6 to F~ = 0.3. Curves I, 2, 3 and 4, 5, 6 correspond 
to the values ~ = 0, 5, 9. ForFf=0modeswith~10are stable. For F F = 0. 3 modes with B ~ ii 
are stable. Here axisymmetric~perturbations are the most unstable. Fdr U~= i0 the most unstable 
modes are given by B= I, 2ands= 66. The data of Fig. 3 show that torsion of the fluid leads to 
flow destabilization: the maximum perturbation growth factor increases and the instability range 
expands. Torsion destabilizes the nonaxisymmetric modes to a greater degree. 

In the study of the stability of jets we used an algebraic method based on that of Sturm 
for extracting the real roots [12]. The growth factors of the unstable perturbations are de- 
termined from the solution of Eq. (i0), which is carried out using the method of Muller [13]. 
From the four roots we keep the one with the largest imaginary part. Series of calculations 
are done in which ~ changes from As to NaA~ in steps of size Aa and B = I, 2,..., N~. The 
results are printed out in tabular form to two significant figures; a typical calculation is 
shown in Table i. The calculations show that for nonzero torsions F~, Fi, F e and different 
relative densities (e.g., 0.01 and i), torsion of the fluid and medium inside the jet cavity 
destabilizes the flow. Torsions of the medium outside of the jet F e = I, 2, 3 lead to sta- 
bilization of the flow, hut further increase F e = 4,... destabilizes the flow. In these 
cases the nonaxisymmetric modes ~ > 2 are the most unstable. Translational flow of the medium 
outside and (or)inside the jet cavity leads to flow stabilization if it is close to the ve- 
locity of the fluid, and leads to flow destabilization in the opposite case. A decrease (from 
1 and below) of the relative densities of the ambient media leads to a decrease in the pertur- 
bation growth factors. In the thinnest jets these are larger when re=~O~ Pi = O. If Fi=~ 0r 
F e = 0 they are smaller. For a fixed annular layer of ideal fluid in a medium at rest, the 
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TABLE I. Perturbation Growth Factors for an Annular Jet 

2 3 4 13 14 

0 0 
1 0 
2 0 
3 2 
4 3 
5 4 
6 5 
7 6 
8 7 
9 7 

I0 8 
11 9 
12 9 
13 10 
14 11 
15 11 
16 12 
17 13 
18 13 
19 14 

Note: 

0 
0 
0 
0 
2 
3 
4 
5 
6 
7 
7 
8 
9 

10 
10 
11 
12 
12 
i3 
14 

5 6 

0 
0 
0 
o 
1 
2 
3 
4 
5 
6 
7 
8 
8 
9 

10 
11 
11 
12 
13 
13 

7 8 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
2 1 
3 2 
4 4 
5 5 
6 6 
7 6 
8 7 
9 8 

9o 
10 1 
11 10 
11 11 
12 12 
13 13 

9 10 

0 
0 
o 
o 
o 
0 
0 
0 
2 
3 
4 
5 
6 
7 
8 
9 

10 
10 
11 
12 

I1 12 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
l 0 
2 1 
4 3 
5 4 
6 5 
7 6 
7 7 
8 8 
9 9 

10 9 
11 1c 
11 11 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
3 
4 
5 
6 
7 
8 
9 

10 

I5  16 

? 9 
? 9 
3 9 
3 9 
3 0 
3 0 
9 0 
9 0 

0 
3 0 
0 0 
0 0 
i 0 
3 1 
4 3 
5 

8 
9 8 

i 
17 18 [ 19 

0 0 0 
0 0 0 
o 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 3 
0 0 0 3 
0 0 0 3 
0 (3 0 [ 

C 0 O 
C 0 O 
C 0 0 
C 0 O 
2 0 0 
4 1 0 
~ 3 0 

5 3 

20 21 

) 0 
) 0 
3 o 
) o 
3 0 
3 0 
3 0 
) 0 

0 
0 
o 
0 
0 
0 
0 
o 
o 
0 
0 
o 

Pi = 0e = i0 -2, Wa = Wb = i0-2, a = 0.95, b = 1.05, 
F i = O, F e = i0, Ff = O, U i = O, U e = 0, Uf = i. 

stability criteria with respect to infinitesimal perturbations are x ~i (8 = O) or 8 ~i 
(x~0), independent of the relative densities Pi = Pe. We also consider the stability cri- 
teria in the general case. 

We compared the flow stability of circular cross-section capillary jets and jets with 
an internal cylinder. The analysis showed the stabilizing effect of an internal body on the 
flow of a jet for both an ideal fluid and a viscous fluid. The viscosity promotes stability 
of such flows, with the effect increasing as the difference in radii between the jet and in- 
ternal body decreases (8 = 0~ Pe +0)' 

In the calculations a specialized computational program was created for the modified 
Bessel functions and their derivatives for values of the argument ranging from i to i00 and 

= 0, i, 2,..., 19. The results coincide with the data of Table 9.11 of [14] to within four 
significant figures. Our conclusions and results can be used in industrial engineering appli- 
cations of fluid flow with an interphase for efficient calculation of hydrodynamic instability 

phenomena. 

Finally, we consider the shortwave limits ~§ We transform (i0) to the form 

m 2nz @ ov m2 + ox nz @ ~x~v + Pir~ (~v @ n2) @ per~ (~ @ m2) -]- P~per~ r~ = O. ( 1 7 )  

For Pi = Pe = Po we consider the following cases: 

Fj =0:m=n, ri-#re, 

F e - -  F i = 0, Ue = Us: m-J=n, ri = re = r. 

T h e n  E q .  ( 1 7 )  c a n  b e  t r a n s f o r m e d  t o  o n e  o f  t h e  f o r m s  

(Por~ @ ~u  @ m2) (Oor~ @ ~ x  + m2) = 0 ,  

(Oo r 2 @ O u  @ n 2 )  (Po r2 ~ x @ m 2 )  = O. 

E q u a t i o n  ( 1 1 )  a n d  a l s o  E q s .  ( 1 2 ) ,  ( 1 3 )  r e d u c e  t o  

pir]  + (o~ + m 2 = 0, p~r~ -F ~y ~ tz~ = 0. 

A s  a n  e x a m p l e  w e  c o n s i d e r  t h e  l a t t e r  e q u a t i o n .  I n  t h e  l i m i t  a §  E q .  ( 1 5 )  t a k e s  t h e  f o r m  

The necessary condition for an extremum in FB(~) is that its derivative vanish: 
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dF (a)d  -29~AU (a.~AU + ~ . .  ari0  / + 9 rX0. - - 

The q u a d r a t i c  e q u a t i o n  (19) can  be  s o l v e d  f o r  a , ( ~ ) .  
when 5U = 0:  

Wb = 0, dZFe~ 2pc (AU) s - -  6Wba , .  (19) 
b ~ d~Z 

The solution is particularly simple 

/ 2 2 

3Wb b 3 - ~ -  ' d~ - - - - ~  ~ O. (20) 

2 
The value ~, (B) determined from (20) is a maximum of the function nim. We note that in the 
asymptotic limit ~§ ~ we have 

~cd= e x p ( y - - x ) + e x p ( x - - y )  [ 1 @ O  ( @ ) ]  
exp (y -- x) -- exp (x -- y) 

For comparison of the asymptotic result with the calculations using (15), recall that for 
~ 102 , the larger the layer thickness b--l, the larger y--x and the more precise the asymptotic 

value ~d ~ i. 

In actual conditions it is of interest to examine the lengthening of the cavity of a 
cylindrical annular jet [15]. In order to prolong the cavity, a torsion in the fluid was 
suggested in [15]. In [16] it was shown that the torsion prevents the closing up of the 
cavity of a stationary annular jet. We study the stability of an annular jet ignoring the 
inertia of the ambientmedia: Pi = Pe = 0. In this case axisymmetric perturbations are the 
most unstable. Equation (i0) is transformed to 

m ~ @ (as @ ay) m 2@ a0 = 0. (21)  

The biquadratic equation (21) will have real roots if 

(ax + av)Z - -  4a0 > 0, a0 > 0, ax @ a v <~ O. (22)  

But  (22)  i s  known to  be  s a t i s f i e d  i f  t h e  f o l l o w i n g  two e q u i v a l e n t  i n e q u a l i t i e s  a r e  s a t i s f i e d :  

~ox ~ O, o,j ~ O, as ~ O, a v --.~ O, 

O<V~(~z) a W ~ ( 1 - - x Z ) . ~ l ~ < ! ' ~ ( o : )  == bW~, (t/2- !). (23) 

The t o r s i o n  o f  t h e  f l u i d  m u s t  be  w i t h i n  t h e  l i m i t s  g i v e n  by (23)  i n  o r d e r  n o t  t o  c a u s e  g r o w t h  
o f  p e r t u r b a t i o n s  w i t h  wave number s  ~ ~ a ,  b e c a u s e  A c t u a l l y ,  
perturbations are present in the flow with a range of wave numbers. For r~ one can take 

2 2 ra(am) , Pb(am) for the lower limits of this range. Since the dependence o the roots of the 
characteristic equation (i0) on Pi, Pe is continuous, in a sufficiently small neighborhood 
of the state Pi = Pe = 0, B = 0 there are states with Pi, Pe --/=0, B = 0 corresponding to 
stable flow in an annular jet. This analysis explains the observed lengthening of the cavity 
of an annular jet moving in air in terms of the torsion of the fluid. 

The expression for the growth factor of shortwave perturbations in this case has the 
number and growth factor of the fastest growing perturba- 0). The wave form nim= /~-y (mx < 

tion are given by 

/ ry , n,m(~,)= 
U (Z, 

3b3W/b 3b 3 

P e r t u r b a t i o n s  w i t h  ~ > uo = r a r e  s t a b l e .  T o r s i o n  o f  t h e  f l u i d  e x p a n d s  t h e  u n s t a b l e  r e g i o n  
w i t h  r e s p e c t  t o  ~ and a l s o  c a u s e s  an  i n c r e a s e  i n  t h e  g r o w t h  f a c t o r s .  The t o r s i o n  o f  t h e  
fluid can vary between the limits given by the inequality 

I~ < l'~ (~) c~3b3~Tb, ( 24 ) 

without causing growth of perturbations with wave numbers ~x ~ ~. 

NOTATION 

a, b, radii of unperturbed free surfaces of an annular jet or fluid layers inside and 
outside a circular cylinder; Ha, Hb' perturbed surfaces; Wa, Wb, corresponding Weber numbers; 
W = a/(PFU~Ro); a, surface tension; Pa, Pi, Pb, P~, pressure perturbations in the fluid and am- 
bient media close to interphases; Pi, Pe, relative densities of the media; X, Y, e, axial, 
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radial, and angular coordinates; t, time; subscripts X, Y, 8, t denote partial differentia- 

tion with respect to the corresponding variable; A=~X ~ ~ ~ Yl aYa \(Y-~a/]+ 0@ -~-~ 'a~ Laplace oper- 

ator; [=F~--L . 
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